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The official documents produced by the Laboratories of the Defence Research Centre Salisbury
are issued in one of five categories: Reports, Technical Reports, Technical Memoranda. Manuals and
Specifications. The purpose of the latter two categories is self-evident, with the other three categories
being used for the following purposes:

Reports : documents prepared for managerial purposes.

Technical records of scientific and technical work of a permanent value intended for other
Reports scientists and technologists working in the field.

Technical : intended primarily for disseminating information within the DSTO. They are
Memoranda usually tentative in nature and reflect the personal views of the author,
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SUMMARY

The maximum entropy method may be used to estimate the
wavenumber power spectrum of data from a linear array of
equispaced sensors by extrapolating a spatial covariance
function. The estimation of this spatial covariance
function from real data is discussed. An example is given
which compares the Fourier and maximum entropy estimates of
the wavenumber power spectrum of sonar data from a linear
array of equispaced receivers at a number of frequencies.
The sensitivity of the maximum entropy method to the length
of the estimated covariance function is also illustrated.
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1. INTRODUCTION

The maximum entropy method (MEM) has been successfully used(ref.l,3) to estimate
the power spectrum of severely-truncated time series. The enhanced resolution
of the MEM power spectral estimates are due to the estimation of a set of linear
prediction filter coefficients which can be used to extrapolate either the data
or the covariance function of the data outside a finite observation interval.

In frequency domain beamforming the estimation of the wavenumber power spectrum
using data from a linear array of equispaced sensors is well-known to be analogous

to the estimation of the power spectrum of a time series. As shown in Section 2
the wavenumber power spectrum at each frequency of interest is the Fourier transform
of a complex spatial covariance function which can readily be derived from the
cross-power spectral matrix. For an array of limited aperture MEM can then be
used to extrapolate this spatial covariance function independently at each frequency.
It should be pointed out that the estimates of the frequency wavenumber spectrum
discussed in this report differ from the two-dimensional MEM recently proposed by
Woods(ref.4). In the application considered here the extrapolation in the time
domain is unnecessary since increased frequency resolution can easily be obtained
by increasing the length of the time data sequence from each sensor.

In Section 4 the estimation of the spatial covariance function of data from a
linear array of equispaced sensors is discussed and the effect on the MEM of biases
in estimates of the covariance function due to windowing is shown.

Finally in Section 5 the methods discussed in the previous sections are used to
estimate the maximum entropy frequency wavenumber power spectrum of sonar data
from a linear array of equispaced sensors. For comparison the Fourier estimates
of the frequency wavenumber power spectrum were calculated and are also presented.
The sensitivity of the MEM to the length of the estimated spatial covariance
function is illustrated by means of an example.

This work is part of a continuing R&D programme in signal processing for underwater

acoustics and has been carried out under task DST 79/069.

2. THE FREQUENCY WAVENUMBER POWER SPECTRUM

In beamforming, the power spectrum of noise incident upon the array is often
estimated as a function of frequency and the angular co-ordinates. Because of
the rotational symmetry of a linear array only the total power density incident
on the array from a cone defined by an angle 0 relative to the axis of the array
can be measured. Thus the noise field can be estimated only as a function of
frequency and the angle 0. An alternative approach (discussed in more detail in
reference 5) is to use the single-dimension co-ordinate wavenumber* k, defined by

4
k = sin O/X

instead of 0. The rationale for using the frequency wavenumber approach has been
discussed in reference 5 and is adopted in this report.

Denoting the e-th sampled output of the j-th receiver by x.(tor ) where 7 is the

sampling interval, it follows that if A(f,k) is defined by

* sin 0/X is strictly kx, the component of the wavevector along the axis of array.

Since only one dimension is considered, the x subscript is dropped and k is
referred to as wavenumber.
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M/2 N/2

A(f,k) liim liim 1 1 x e-2y i fLtr oe -2ikjd

j=-M/2 t=-N/2

where d is the separation of adjacent receivers, then the two-dimensional power
spectral function is given by

S(f,k) = <-A~f,k) A*(f,k) >,

where < > denotes ensemble averaging.

Defining

N/2
im I -2irif r

X.(f) = n 1 (Iro) e- o
N*-o NJ 0

t =-N/2

and

M/2-j

rl(f) i i < i f ) * . (f)> (2)j M*- M+ J+1

i=-M/2+j

then it can easily be shown that

M/2
lim 1 r(f - 2 r i j k d

S(f,k) = m 1+--(f)e
W*OO M L

j=-M/2

By analogy with time series analysis it is natural to term r. (f) the spatialJ

covariance function since its infinite Fourier transform is the wavenumber
spectrum. One important difference is that r. (f) is in general complex whilst

for time series analysis the covariance function in general is real.

For an array of finite extent r. (f) can only be estimated for IjI < M' where M'd

is the aperture of the array. Hence a natural estimator is obtained by replacing
the infinite sum in equation (1) with a finite one. For an array with a finite
number of receivers and for a finite number of sampled data points the Fourier
estimate SB(f,k) is defined to be

SB(f,k) < AB(f,k) A >

. .... B B.. . . . . . .
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where

M/2^ 2 X (f)e -2rikjd
AB(f'k) - M+1 Z

j=-M/2

and where

N/2 N2 27r if tr (3)

Xj(f) = N+0 x(trode 0

t=-N12

The subscript B has been used to denote that, in forming this two-dimensional
periodogram, a Bartlett window has been implicitly applied to the spatial

covariance because of the presence of the - term in the summation.
M+ 1

3. MAXIMUM ENTROPY ESTIMATES OF THE WAVENUMBER SPECTRUM

At each frequency the MEM may be used to extend the spatial covariance
function derived from a finite aperture array. As discussed in the introduction
each frequency is treated separately on the assumption that time series outputs
from all receivers can be made sufficiently long to achieve any desired frequency
resolution. Thus the method of Woods for estimating two-dimensional maximum
entropy spectrum need not be used and a simple extension of the method of Edwards
and Fitelson(ref.6) into the complex domain can be used. The method is outlined
in this section for the sake of completeness.

The entropy at any given frequency f for a process with a wavenumber spectral
density S(f,k) may be defined as

H(f) = fK log S(f,k) dk (4)

where the integration runs over the values of k for which S(f,k) is non zero.

The maximum entropy estimates 9,E(fk) of S(f,k) are derived by maximising (4)

subject to the constraint that the inverse Fourier transform of SME(f,k) is equal

to f.(f). (A more recent derivation of the method by Newman(ref.7) does notJ
require equality but a close approximation to the observed P.(f)'s. This method

* is not considered in this report).

The problem of maximizing (4) subject to the constraint

k
0

S ME(f,k) e 21rikjd dkI-k
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for j = 0, ±1,..

and where

r(f) = _.(f)
rJ -

can readily be solved by introducing Lagrange multipliers a la Edwards and
Fitelson. The solution is

S(f,k) N N- 1 (5)

I a.e-2 ikjd[2

j=0

where PN and the a.(a = 1) are solutions of the complex equation

Joo
0 r r 1 N

0 11-
r a 0

* (6)

1 0
T _N+l r_ I- ro 0 aN-1l0

It is worth commenting that PN can be related to final error of a prediction

filter which uses N-1 previous values to estimate one lag ahead. A wealth of
papers exists on efficient algorithms for solving the Toeplitz equation (6)
(see reference 8).

As a final comment reference should be made to an alternative method developed

by Burg(ref.2) whereby the prediction filter coefficients (ie the a's) can be
estimated directly from the data without the need to estimate the covariance
function.

4. ESTIMATION OF THE SPATIAL COVARIANCE FUNCTION

The application of the MEM described in the previous section requires that the
spatial covariance function at each frequency of interest be estimated. From
equation (2) a reasonable estimate of rj(f) would appear to be
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M/2-j

r_(f < X (f) X (f) > (7)

i=-M/2+j

where < > denotes averaging over P independent estimates, ie

P-1

p(k)*^ f = 1 E -. (k)(f) Xj+i (f).X.i . (j f) >P -P (8)

k=0

with

<Xk() > = 0 t * m

In general a good approximation to equation (8) can be obtained by segmenting
the total time series into P consecutive blocks.

A

It can easily be shown that the estimate rj (f) given by equation (7) is biased.
A

The process of averaging reduces the variance of the estimator r. (f) but not

the bias which is caused by the implicit weighting function ,i (ie the Bartlett
M+ 1

weiihting in equation (7)). To illustrate the seriousness of this type of bias
in r (f) consider the example of sine wave in white noise. The time series

argument has been chosen here but it can easily be shown that it is trivial to
extend the following argument to the spatial domain. Replacing the finite

average by the ensemble average, equation (7) reduces to

(f) - M-j l jo + a cos 27rojr0

where

30 0 j 0

and a is the signal-to-noise power ratio. A plot of K(f) is given in figure 1

where the Bartlett (or triangular) weighting over the interval (O-T) can readily
be seen for a=10. Therourier spectrum, the maximum entropy extrapolation of
the covariance function and the corresponding maximum entropy spectrum are also
shown in figure 1.

As can be seen the MEM interprets the weighting on the covariance function as a
modulation, extrapolates both the modulation and the carrier and consequently
splits the single spectral line into two closely spaced lines beating together.
Thus the bias introduced by using equation (7) as an estimator of the covariance
function has a radically different (and vastly misleading) effect on the MEM
power spectral estimates than it does on the Fourier ones where it permits a
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well-known trade-off between main lobe and side lobe responses. It should be
emphasized that this is not a weakness of the MEM - given the distorted covariance
matrix it made optimum use of the available information. The same argument is
directly applicable to the spatial domain where the corresponding effect would be
the splitting of a single arrival into two distinct ones.

The technique adopted in this report for removing the bias is to replace
equation (7) by

M/2-j
.(f) = 1 V <^ ^X
j I 2M+l-jI < Xi(f)X*+i(f) > p (9)

-NI/2+j

which is now an unbiased estimator of r.(f). Unfortunately the variance of this

estimator of r. (f) increases linearly with Iji. Thus the variance of the estimate

of greatest lag will be M times the variance of the zero lag estimate. An effect
of statistical variations in estimates of the r.(f) is move the position of poles

in the response function of the linear prediction filter coefficients. In
particular the effect of noise on poles just inside the unit circle can be to
push them outside the unit circle and consequently the method becomes unstable.
This results in the maximum entropy extrapolation expanding instead of decaying
exponentially. As discussed in the following section this can be avoided by only
using M' (where Ml :H) of the available lags.

4

5. APPLICATION TO REAL DATA

The method described in the previous sections has been applied to the estimation
of the frequency wavenumber power spectrum of acoustic data from a linear array
of 32 equispaced hydrophones.

A block diagram of the processing is shown in figure 2. The outputs from each
hydrophone were narrowband filtered (by means of the FFT routine) into 40 indepen-
dent frequency bins. The algorithm is more efficiently implemented by inter-
changing the order of summation in equation (9), ie the cross-power spectral
matrix

X(f) X.(f)

was estimated at each integration and then was averaged along the diagonals to
give an estimate (ie equation (9)) of the spatial covariance function. This
estimate was then smoothed by averaging over 300 independent samples of the
spatial covariance function. The assumption was made that the frequency wave-
number power spectrum remained stationary over this period.

At each frequency NL lags of the spatial covariance function were used to estimate

the NL complex prediction filter coefficients via equation (6) which was solved

using an efficient form of the Levinson algorithm. These coefficients were
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augmented by 128 -NL zeros to allow the FFT routine to be used to efficiently

evaluate the denominator of equation (5) at 128 equispaced points in wavenumber
space for each frequency. The number of wavenumber bins corresponding to plane
waves arriving from real arrival angles varies linearly from zero at d.c. to
128 at fh (the frequency corresponding to the half wavelength of the array).

The region which does not correspond to real arrival directions is termed the
'non-physical' region of the frequency wavenumber spectrum and a full discussion
and interpretation of this region is given at reference 5.

The power spectrum was scaled by the maximum value of SME(f,k) and displayed in

a waterfall format in figure 3 for N L=16 and figure 4 for N L=24 . (The 32 hydro-

phone array provides a maximum of 32 lags).

For comparison the Fourier estimate of the frequency wavenumber power spectrum
was calculated as indicated in figure 5. After FFT'ing the acoustic data from
each hydrophone to the same frequency resolution as for the MEM a second FFT was
used to evaluate the spatial summation in equation (3) (see reference 5). Note
that since only 32 hydrophones were analysed only 32 independent wavenumber^ bins
are possible. At each frequency the spatial array of hydrophone data (ie X(f)

for j = 0,1,...31) was augmented with 96 zeros to allow the FFT routine to be
used to efficiently evaluate the spatial Fourier series. This also allowed a
ready comparison with the maximum entropy estimates since the same number of
wavenumber points were estimated at each frequency for both methods.

Comparing figures 3 and 5 the increased wavenumber (and hence angular) resolution
of the MEM is apparent. Comparing figures 3 and 4 where the number of spatial
lags used has been increased from 16 to 24 respectively, two conclusions emerge:

(1) The resolution has been improved by increasing the number of lags; and

(2) At some frequencies (eg the lowest two frequencies of figure 4) and the m.Em
is starting to become unstable.

If the number of lags is increased further this instability becomes more pronounced.

6. CONCLUSIONS

The maximum entropy technique outlined in this paper is a computationally
efficient way to increase the spatial resolution of estimates of the frequency
wavenumber power spectrum of data from a linear array of sensors.

The effect of bias in the estimate of the spatial covariance function which is
caused by windowing can cause misleading results. A simple technique for
removing this bias has been shown to be effective when applying MEM to real data.
The technique uses a subset of the available lags of the spatial covariance
function; unfortunately it becomes unstable as the number of lags approaches the
maximum possible (ie the number of hydrophones in the array). Further work
using information theoretical ideas for determining the number of lags to be used
is in progress.



WSRL-0190-TR -8-

REFERENCES

No. Author Title

1 Burg, J.P. "Maximum Entropy Spectrum Analysis".

Paper presented at 37th meeting of the
Society of Exploration Geophysicists,
Oklahoma City, Oklahoma

2 Burg, J.P. "A New Analysis Technique for Time Series
Data".
Paper presented at NATO Advanced Study
Institute on Signal Processing, August 1968,
Enschede, Netherlands

3 Lacoss, R.T. "Data Adaptive Spectral Analysis Methods".
Geophysics, 36, 661, 1971

4 Woods, J.W. "Two-Dimensional Markov Spectral Estimation".

IEEE Trans. Info. Theory IT-22, 552, 1976

Gray, D.A. "Frequency Wavenumber Beamforming by use
of the Two-Dimensional Fourier Transform".
WSRL-Tech Report 0162

6 Edwards, J.A. and "Notes on Maximum Entropy Processing".
Fitelson, M.M. IEEE Trans. Info. Theory, 493, 1971

Newmann, W.I. "Extension to the Maximum Entropy Method".
IEEE Trans. Info. Theory IT-23, 89, 1977

8 Gray,-D.A. "Maximum Entropy Spectrum Analysis
Technique - A Review of its Theoretical
Properties".
WRE Tech Report 1912(W), 1978

Q E



WSRL-0196-TR
Figure 1

z
w w

M
I- w

00

I--

2 CC
z Z Z

I--

ac
44

.4j

.44
0z

I-LAL

* -C C

0 c n



WSRL-0196-TR
Figure 2

LU

0)-

. t
0 a .-

oA U.z

w U C)
I-W Etn0

-j 4. LI ,t

#44
0

CD 0

04 4.)
DU

LU -

.4 0

w 3

'n (nL 44

0

I-..

x 
x

zS



WSRL- 1096-TR
Figure 3

zI

4)

>

t4

'44

4 )

, C.)

co

E

4-)

"-4

Z/1 (N3MOd)



WSRL-0196-TR
Figure 4

$1.

(44

4J

4)

L4

E/t (N3M4)



WSRL-0196-TR
Figure 5

i

44

U

w

z
0

E3:
0

04)

wJ x

0

-- . ...

w 4

,'-I

w0

V))

LL IiL U.
LL LL-L

rA



WSRL-0196-TR
Figure 6

4J
U

0~

Cd

-4

4J)

4
V)

0

-4

".j

.44

Z/ *1Md



WSRL-0196-TR

DISTRIBUTION

Copy No.

EXTERNAL

In United Kingdom

Defence Scientific and Technical Representative, London No copy

Dr C. Hart, (RN3 Div) Royal Aircraft Establishment, Farnborough 1
Dr D. Nunn, Department Electrical Engineering, Southampton

University, Southampton

Dr J. Hudson, Department Electrical Engineering, Langhborough

University, Loughborough 3

British Library Lending Division, Boston Spa, Yorkshire 4

Dr D. Stansfield AUWE, Portland Dorset 5

Dr D. Williams, AUWE, Portland Dorset 6

In United States of America

Counsellor, Defence Science, Washington No copy

Dr D. Edelblute, Naval Ocean System Centre, San Diego,
California 7

Dr V.C. Anderson, MPL Scripps Institute of Oceanography,
San Diego 8

Dr J. Kinnison, Naval Ocean System Centre, San Diego, California 9

Dr R.N. McDonough, University Delawere, Newark, Delawere 10

Dr H. Nuttal, Naval Underwater System Centre, New London 11

Dr H.P. Bucker, Naval Ocean System Centre, San Diego 12

National Technical Information Services, Springfield Va 22151 13

Engineering Societies Library, New York, NY 10017 14

Cambridge Scientific Abstracts, Riverdale Md 20840 15

Dr D.P. Skinner, Naval Coastal Systems Centre, Panama City,
Florida 52407 16

In Japan

Dr Nashiro Ishu, Nagoya Institute Technol, Nagoya Japan 17

In Australia

Professor R.G. Keats, Maths Department, University of Newcastle 18

Dr A. Cantoni, Department Electrical Engineering, University of
Newcastle 19

Chief Defence Scientist 20

Deputy Chief Defence Scientist 21

Superintendent, Science and Technology Programmes 22

Director, Joint Intelligence Organisation (DDSTI) 23

Navy Scientific Adviser 24



WSRL-0196-TR

Copy No.

Superintendent, Central Studies Establishment 25

Superintendent, RAN Research Laboratory 26

Defence Library, Campbell Park 27

Library, Aeronautical Research Laboratories 28

Library, Materials Research Laboratories 29 4
Defence Information Services Branch (for microfilming) 30

Defence Information Services Branch for:

United Kingdom, Ministry of Defence,
Defence Research Information Centre (DRIC) 31

Canada, Department of National Defence,
Defence Science Information Service 32

United States, Department of Defense,
Defense Documentation Center 33dJ-SA.

New Zealand, Ministry of Defence 34

Australian National Library 35

Director General, Army Development (NCO) for:

UK ABCA representative, Canberra 36

Canada ABCA representative, Canberra 37

US ABCA representative, Canberra 38

NZ ABCA representative, Canberra 39

Director, Industry Development, Regional Office, Adelaide 40

WITHIN DRCS

Chief Superintendent, Weapons Systems Research Laboratory 41

Superintendent, Electronic Warfare Division 42

Senior Principal Research Scientist, Radar 43

Senior Principal Research Scientist, Marine 44

Df M. Lets, Jindalee Ploject 6roup 45

Principal Officer, Underwater Detection Group 46

Principal Officer, SPC Group 47

Dr D. Kewley, Underwater Detection Group 48

Dr D.G. Cartwrigt, UD Group 49

Mr A.P. Clarke, SPC Group 50

Dr A.K. Steele, SPC Group 51

Mr P. Marshallsay, UD Group 52

Author 53

DRCS Library 54 - 55

Spares 56-64.

j'


